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We present a Hamiltonian formulation of coupled mode theory for scenarios in which the coupled modes are
associated with different “parent structures,” such as two nearby waveguides. The relativistic nature of the
photon leads to the complication that not any set of orthonormal modes can be used as a basis if the associated
amplitudes are to satisfy canonical commutation relations. This difficulty is circumvented by the introduction
of “dressed parent modes,” which are in fact seen to be the “coupled modes” of the system. While an exact
solution of the linear problem within the restricted basis of interest formally must be found before these modes
can be constructed, in practice they can be constructed directly from the modes of the parent structures. The
approach can be applied to periodic parent structures, such as photonic crystal waveguiding structures, as well
as to simpler waveguides. We illustrate the accuracy of the various approximations employed by studying two
sample systems in detail. We derive the linear coupled mode equations, and show how the approach can be
immediately generalized from the linear regime to treat problems in nonlinear quantum optics.
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I. INTRODUCTION

The coupling of modes in adjacent dielectric waveguides
is an old subject �1�. Following its first applications in the
regime of linear, classical optics, the theory of coupled
modes has been extended into both nonlinear �2� and quan-
tum regimes. Quantum linear and nonlinear properties of di-
rectional couplers have been studied using an effective
Hamiltonian �3�, and nonclassical behavior such as
squeezed-state generation �4� and optical parametric pro-
cesses �5� have been investigated. Nowadays, photonic crys-
tals �6–8� offer a new platform for such effects, due to their
miniature size and potential applications as ultracompact op-
tical devices. If the photonic crystal possesses a band gap in
the frequency range of interest, line defects can be used as
waveguides for light. Coupled mode theory applicable to
photonic crystal structures has been presented by a number
of workers �5,9,10�. Yet a derivation of coupled mode theory
for photonic crystal waveguides, applicable in the quantum
and nonlinear regimes, is still lacking. In this paper we de-
rive a general coupled mode theory for waveguides, based on
a Hamiltonian formulation of Maxwell’s equations, which
can easily be generalized to include quantum and nonlinear
effects in a systematic manner. It is applicable both to
photonic crystal waveguides and to waveguides of other
types.

While the analysis in this paper is focused solely on the
linear regime, it is nonetheless a significant extension of ear-
lier work on the canonical formulation of the electrodynam-
ics of fields in artificially structured materials. To highlight
this, it is useful to distinguish two types of coupled mode
theories. In a single parent type of theory, one starts with the
exact linear modes of one nominal medium; the coupling
occurs, in a Hamiltonian language, because a perturbation
Hamiltonian is introduced. A simple example is a very weak
Bragg grating in an optical fiber. Here the modes can be
taken to be forward- and backward-propagating waves, with

the perturbation Hamiltonian describing the effect of the
variation in the index of refraction responsible for the grat-
ing. Due to this perturbation, the amplitudes of the forward
and backward propagating waves become coupled. This kind
of approach has been extended, within a Hamiltonian frame-
work, to treat linear and nonlinearly coupled modes in pho-
tonic crystals, even if the linear index variations are not weak
�11,12�. Even there, however the defining feature is that
the basis set of modes, which for photonic crystals is the
set of Bloch modes, are eigenmodes of one nominal linear
structure.

In contrast, in a multiple parent type of coupled mode
theory one starts with the exact linear modes of different
structures, and even in the linear regime the modes are
coupled because the actual structure is neither of the parent
structures. We refer to these modes, which are typically non-
orthogonal, as the parent modes. The classic example here is
the directional coupler, where one begins with modes that
would be exact for isolated channels, but in fact are coupled
because the channels are close to each other. The generaliza-
tion to photonic crystal waveguides, shown in Fig. 1, in-
volves the coupling of waveguide modes of two nominal
structures �Figs. 1�a� and 1�b��, which arises because the two
channels are close to each other in the actual structure of
interest �Figs. 1�c��. The complication arising in a canonical
formulation of a multiple parent theory is that there is no
single, physical unperturbed Hamiltonian that governs the
uncoupled evolution of all of the parent modes employed.
We provide a framework for addressing the optical dynamics
of such structures by introducing a formal “unperturbed
Hamiltonian” governing what we will call “dressed parent
modes,” or simply “dressed modes,” and a formal perturba-
tion Hamiltonian that then couples them in a description of
the full problem.

A related situation can arise in calculations in quantum
chemistry, where one often starts with a basis of nonorthogo-
nal orbitals involving eigenstates of different atomic Hamil-
tonians. The problem in quantum optics is more complicated,
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however, because of the inherently relativistic nature of the
photon. In a general expansion of electromagnetic fields
there appear products of raising and lowering operators with
normalized modes and factors of ���, where � is the fre-
quency of the mode. And so an expansion involving raising
and lowering operators that satisfy canonical commutation
relations cannot immediately be constructed in terms of any
basis set, but only by using the exact modes of the system,
and only when their eigenfrequencies are known. By a ca-
nonical transformation it is possible to construct the dressed
modes mentioned above, which are associated with different,
but still canonical, raising and lowering operators. However,
this can only be done once the exact eigenfunctions and
eigenfrequencies are found.

It might then appear that there is no advantage to identi-
fying the dressed modes and their coupling constants. For the
exact eigenmodes must be found first, and if they are already
found why should one bother to construct approximate
eigenmodes? There are two answers to this. The first is that it
is the dressed modes that actually appear as the “coupled
modes” when the linear coupled mode equations are con-
structed from a Hamiltonian formalism. Thus their identifi-
cation helps establish the physics of the problem. Also, when
any nonlinearity introduced in the problem is weak, the
dressed modes form a natural basis for expanding the
nonlinear part of the Hamiltonian.

A second answer is that the difficulty in identifying the
dressed modes and their coupling constants is not as serious
in practice as it is in principle. This is because any frequency
shifts due to mode coupling in the optical regime are typi-
cally much smaller than the frequencies of the modes them-
selves. As a result, although the exact modes must be for-
mally constructed, and the dressed modes indeed built from
them, in fact a series expansion of the dressed modes in
terms of the parent modes can be extracted from the formal
construction. This can be done in such a way that practitio-
ners need never actually determine the exact modes; they can

move directly from the parent modes to the dressed modes,
which are the natural basis for the coupled mode equations
and their extension into the nonlinear regime.

In the rest of this paper we put mathematical flesh on the
bones of the argument given here, and establish the accuracy
of the approximations necessary in moving along this route.
In Sec. II we review the canonical formulation of Maxwell’s
equations, in the presence of material media, in the form
most useful for our purposes �11�. In Sec. III we introduce
the parent modes, and the restricted space they form. We
confirm in two typical examples that, as is often the case, the
exact modes of interest can be well described using this re-
stricted space. We then introduce a set of dressed modes in
Sec. IV, and in Sec. V introduce an expansion in terms of
which the dressed modes can be written directly from the
parent modes; we illustrate how well this expansion recovers
the actual dressed modes for our example systems. In Sec. VI
we show how the coupled mode equations follow from the
Hamiltonian written in terms of the dressed mode raising and
lowering operators, which we call the “dressed mode Hamil-
tonian,” and examine for our example systems the validity of
the kind of approximations that must be made. We conclude
in Sec. VII.

II. CANONICAL FORMULATION OF MAXWELL’S
EQUATIONS

To set our notation, in this section we briefly review a
canonical formulation of Maxwell’s equations that was used
earlier �11,17� to study pulse dynamics in higher dimension
photonic crystals. We focus on classical optics here, but be-
cause its easy generalization to quantum optics is one of the
strengths of this approach, we adopt a quantum notation and,
for the classical Poisson bracket �…,…�, we write
�i��−1�. . . , . . . �; we also use a dagger to indicate complex
conjugation. We will also often speak of operators rather
than variables, especially when it makes the physics more
clear. Beginning with the familiar Maxwell’s equations

�D

�t
= � � H,

�B

�t
= − � � E , �1�

� · D = 0, � · B = 0, �2�

in what follows we treat Eq. �2� as initial conditions
for fields that satisfy Eq. �1�; if Eqs. �2� are satisfied at
any one particular time, then the dynamical equations �1�
guarantee that they are satisfied at all later �and earlier�
times. Neglecting magnetic effects in our structures we have

B�r,t� = �0H�r,t� ,

D�r,t� = �0E�r,t� + P�r,t� , �3�

where P�r , t� is the polarization of the material. In this paper
we restrict ourselves to linear material response, for which P
is typically written in terms of E through a constitutive
relation of the form

FIG. 1. �Color online� �a�,�b� Dielectric profiles of individual
photonic crystal waveguide. �c� Dielectric profile of the coupled
photonic crystal waveguide system.
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Pi�r,t� = �0�1
ij�r�Ej�r,t� , �4�

where the superscripts represent Cartesian components and
are to be summed over if repeated. For example, if we have
an inhomogeneous medium that is nonetheless isotropic in
its linear response, we can write

�1
ij�r� = �ij�n2�r� − 1� , �5�

where the real n�r� is the local index of refraction. However,
since the divergence Maxwell equations �2� take the form of
initial conditions, it is convenient to treat D and B as our
fundamental fields, and we here write P as a function of D,

Pi�r,t� = �1
ij�r�Dj�r,t� . �6�

This introduces no loss of generality, because for any speci-
fied �1

ij�r� appearing in Eq. �4� we can easily find the �1
ij�r�

appearing in Eq. �6� by using the second of �3�; in the special
case of Eq. �5�, for example, we have

�1
ij�r� = �ij�1 −

1

n2�r�
	 . �7�

The total energy of the electromagnetic field, in the most
general model of the form �6�, can be written as �13�

H =
1

2�0

 drBi�r�Bi�r� +

1

2�0

 drDi�r�Di�r�

−
1

2�0

 drDi�r��1

ij�r�Dj�r� . �8�

In writing Eqs. �6� and �8� we have implicitly assumed that
the carrier frequency is far from any material resonance, so
P�r , t� is a function only of D�r , t� �or alternatively of
E�r , t�, using Eq. �4�� at the same time; hence we neglect any
material dispersion.

In order to construct a canonical formulation of electro-
magnetic field we require a set of Poisson bracket relations
that yield the dynamical equation �1� as a consequence of
Hamilton’s equation using the total energy as the Hamil-
tonian. The appropriate equal time commutation relations are

�Di�r�,Dj�r��� = �Bi�r�,Bj�r��� = 0,

�Di�r�,Bj�r��� = i��ijl �

�rl ���r − r��� , �9�

where �ijl is the Levi-Civita symbol. Taking these as our
fundamental commutation relations, it follows that we
recover Eq. �1� using Hamilton’s equations

i�
�D

�t
= �D,H� ,

i�
�B

�t
= �B,H� . �10�

This approach for constructing a canonical formulation of
the electromagnetic field has its roots in the early work of
Born and Infeld �14�.

In the special case of a periodic structure, the D and B
fields can be expanded in terms of the Bloch modes of the
structure, as illustrated earlier �11�. If there is one dimen-
sional periodicity in the structure, such as a photonic crystal
slab missing one or a few rows of rods �holes�, the modes of
interest are labeled by a �positive or negative� crystal wave
number k, −	 /
�k�	 /
, where 
 is the periodicity of
the structure; we can write

B�r,t� = �
m

 dk���mk

2
amk�t�Bmk�r� + c.c.,

D�r,t� = �
m

 dk���mk

2
amk�t�Dmk�r� + c.c., �11�

where m is the band index, amk is the mode amplitude for the
Bloch modes Bmk�r�, obtained as the solution to the so-called
“master equation”

� � �� � Bmk�r�
n2�r�  = ��mk

c
	2

Bmk�r� . �12�

Here we have specialized again to the particular model �5�
and �7�, but an extension to a more general �ij�r� can be
easily constructed. It is well-known that Eq. �12� is a Her-
mitian eigenvalue problem, and its numerical implementa-
tion has been discussed extensively in the literature �15�. The
corresponding displacement field Dmk can then be obtained
from Bmk using Maxwell’s equations

Dmk�r� =
i

�0�mk
� � Bmk�r� . �13�

Without loss of generality we assume the structure is ori-
ented such that it is periodic in the ẑ direction. From Bloch’s
theorem, Bmk�r� takes the form

Bmk�r� =� 


2	
bmk�r�eikz, �14�

where bmk�r�=bmk�r+
ẑ�, and the factor �
 /2	 is intro-
duced to simplify the formulas below; similar relations hold
for Dmk�r�. With our choice �16� of the constants appearing
in Eq. �11�, the mode functions Dmk�r� and Bmk�r� satisfy the
normalization conditions


 dr
Bm�k�

* �r� · Bmk�r�

�0
= �mm���k − k�� ,


 dr
Dm�k�

* �r� · Dmk�r�

�0n2�r�
= �mm���k − k�� . �15�

These result from first constructing the modes in a large vol-
ume using periodic boundary conditions, and then passing to
the limit of an infinite normalization volume �11�; the inte-
grals in Eq. �15� hence range over all space. From these
follow the normalization conditions



cell

dr
bm�k

* �r� · bmk�r�

�0
= �mm�,
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cell

dr
dm�k

* �r� · dmk�r�

�0n2�r�
= �mm�, �16�

where in Eq. �16� the integrals range over all x and y, but
with z ranging over one periodicity length 
; we restrict
ourselves to modes that are bounded in the x and y direc-
tions, although generalizations have been presented �11,12�
earlier. With Eqs. �11�–�16�, the operators amk and am�k�

†

satisfy the commutation relations

�amk,am�k�� = 0,

�amk,am�k�
† � = �mm���k − k�� , �17�

and the Hamiltonian of the electromagnetic fields can be
written as

H = �
m

 dk��mkamk

† amk. �18�

The Hamiltonian approach can easily be generalized to in-
clude nonlinearity of arbitrary order in a systematic way.
Earlier �11,12� it was used with an effective field formalism
to describe pulse propagation in three-dimensional �3D� pho-
tonic crystals, taking into account diffraction and mode
dispersion inside the structure.

III. EIGENMODES IN A RESTRICTED BASIS

While, in general, the Bloch modes of any periodic struc-
ture can be obtained by numerically solving the Hermitian
eigenvalue problem �12�, the approach we consider here re-
lies on the formal construction of the exact waveguide modes
of the overall structure using the approximation that the
space of the modes of interest is spanned, to good approxi-
mation, by what we call “parent modes,” which are exact
solutions of Maxwell’s equations for simpler, parent struc-
tures. Indeed, any type of coupled mode theory necesssarily
relies on the restriction of the space of fields to a subset of
those spanned by a full basis set. So before entering into any
of the details of the coupled mode theory, it is necessary to
argue or establish that such a restricted basis provides a good
description, as is of course often the case. In this section we
do that for two simple structures where the true modes can
easily be found and compared with those found within the
restricted space. These two structures will be used as
examples throughout the following sections.

The first structure is the 2D photonic crystal waveguide
depicted in Fig. 1, where the parent structures are formed by
removing a line of rods in a square lattice. The radius of the
rod is given by r=0.2a, where a is the lattice constant. Fig-
ure 1�a� �1�b�� shows the first �second� parent structure and
Fig. 1�c� shows the coupled waveguide system. The rods are
taken to have an index n=3.4, and the background medium
an index n=1. The dispersion relation for the parent wave-
guide modes is depicted in Fig. 2. While a perfect 2D square
lattice �without defects� exhibits a 2D photonic bandgap, our
particular structure �Figs. 1�a� and 1�b�� supports guided
modes for �a /2	c within the range �0.30387, 0.42059�. In

the analysis that follows we will restrict ourselves to this
frequency regime. While for the overall structure shown in
Fig. 1�c� we have only two parent structures, namely those
shown in Figs. 1�a� and 1�b�, more generally one could
imagine more parent structures; we might, for example, be
dealing with three or more missing rows in the overall struc-
ture. In general, we let N label the number of parent struc-
tures. For simplicity we assume throughout that there is only
one parent mode at each k for each parent structure, and so
there is no need of a band index for the parent modes; our
notation could be easily extended to relax this restriction.

Our second example is a simpler structure of two neigh-
boring planar waveguides shown in Fig. 3�c�, with the parent
modes being those of the structures shown in Figs. 3�a� and
3�b�; again we have N=2. The index of the waveguides is
taken to be n=3.16, and that of the background n=1. The
thickness of the waveguides are taken as d=200 nm; our
focus will be on modes at a frequency corresponding to a
vacuum wavelength of =1.54 �m, and we consider the
modes at that frequency as a function of the gap � between
the waveguides. At the wavelength =1.54 �m there is only
one bound s-polarized �TE� mode for each parent structure,
and we consider only modes with ky =0; so again there is no
need for a band index for the parent modes.

In either of the structures, or more generally for the whole
family of structures of this sort, the parent waveguide modes
Bk

�i� of the ith parent structure satisfy

FIG. 2. Dispersion relation of the photonic crystal waveguide in
Figs. 1�a� and 1�b�. The waveguide supports guided mode for
�c /2	a� �0.30387,0.42059�.

FIG. 3. �a�,�b� Dielectric profiles of individual planar wave-
guide. �c� Dielectric profile of the coupled planar waveguide
system.
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� � �� � Bk
�i��r�

�n�i��r��2  = ��k
�i�

c
	2

Bk
�i��r� , �19�

where n�i��r� represents the refractive index profile of the ith
parent structure �Figs. 1�a� and 1�b�; Figs. 3�a� and 3�b��.
Here we are simply applying the general results of Sec. II to
the parent structures. Continuing along these lines, for a
given Bk

�i��r�, the associated displacement amplitude Dk
�i��r�

follows from Eq. �1�,

Dk
�i��r� =

i

�0�k
�i� � � Bk

�i��r� . �20�

We normalize the modes according to


 dr
Bk�

*�i��r� · Bk
�i��r�

�0
= ��k − k�� ,


 dr
Dk�

*�i��r� · Dk
�i��r�

�0�n�i��r��2 = ��k − k�� , �21�

�see Eq. �15��, and introducing periodic functions bk
�i��r� and

dk
�i��r� as done above �see Eq. �14��, we have



cell

dr
bk

*�i��r� · bk
�i��r�

�0
= 1,



cell

dr
dk

*�i��r� · dk
�i��r�

�0�n�i��r��2 = 1. �22�

The normalization conditions �21� and �22� are appropri-
ate for truly three-dimensional structures where the bound
modes are coupled in both the x and y directions. This is not
the case in our simple examples of Figs. 1 and 3, where,
strictly speaking, one should have normalization conditions
that also restrict the y components of the wave vectors of
two modes to be equal. Such a generalization is straightfor-
ward �11,12� but we do not do it here since it does not alter
our results for the determination of the frequencies of the
modes considered in this section, or for the mode dynamics
considered later in Sec. VI.

We assume that parent modes and their frequencies are
known from a previous calculation or model, and now we
seek waveguide modes of the full system as the solution to
the master equation

� � �� � Bk�r�
n2�r�  = ��k

c
	2

Bk�r� , �23�

where n�r� is the index profile of the structure of interest
�e.g., Fig. 1�c� or 3�c��, and �k is the frequency of the ap-
proximate mode. With the assumption that the parent modes
span the space of the full waveguide modes of interest to
good approximation, we write

Bk�r� = �
j

��j��k�Bk
�j��r� , �24�

where ��j��k� are expansion coefficients to be determined.
Inserting Eq. �24� into the master equation �23�, multiplying

that equation by �Bk
�i��r��*, integrating over all space, and

finally using Eq. �20� together with Eq. �21� and the second
of Eq. �22�, we find the equation

�
j

Mij�k���j��k� = ��k

c
	2

�
j

Sij�k���j��k� , �25�

with the matrix elements Mij�k� and Sij�k� given by

Mij�k� =
�k

�i��k
�j�

c2 

cell

dr
dk

�i�*�r� · dk
�j��r�

�0n2�r�
,

Sij�k� = 

cell

dr
bk

�i�*�r� · bk
�j��r�

�0
. �26�

In matrix form, we have

M�k� · ��k� = ��k

c
	2

S�k� · ��k� , �27�

where M�k� indicates the �in general� N�N Hermitian ma-
trix with elements Mij�k�, S�k� indicates the N�N Hermitian
matrix with elements Sij�k�, and ��k� the N element column
vector with elements ��i��k�; in our particular examples
�Figs. 1 and 3�, recall N=2. Next we define the column
vector ��k��S1/2�k� ·��k�, so the equation above becomes

M̃�k� · ��k� = ��k

c
	2

��k� , �28�

with the matrix M̃�k��S−1/2�k� ·M�k� ·S−1/2�k�. It immedi-

ately follows that M̃�k� is Hermitian, and therefore Eq. �28�
is a standard Hermitian eigenvalue problem. Labelling the

mth eigenvectors of M̃�k� as �m�k�, and its associated
frequency �mk,

M̃�k� · �m�k� = ��mk

c
	2

�m�k� �29�

the mth mode of the overall system with wave number k then
follows from Eq. �24�; since �m�k�=S−1/2�k� ·�m�k� it can be
written as

Bmk�r� = �
j

�m
�j��k�Bk

�j��r� �30�

with

�m
�j��k� = �

l

�S−1/2�k�� jl�m
�l�, �31�

where �m
�l��k� is the lth element of �m�k�.

Since the eigenvectors �m�k� of the Hermitian matrix

M̃�k� can be chosen to satisfy the orthonormality conditions

�
m

�m
�n��k���m

�n���k��* = �nn�,
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�
n

�m
�n��k���m�

�n��k��* = �mm�, �32�

we can easily establish that the Bmk�r� �Eq. �30�� satisfies the
orthonormality condition �15�, as expected. In terms of the
raising and lowering operators associated with the modes
Bmk�r�, and their frequencies �mk following from Eq. �29�,
the Hamiltonian of the overall structure is given by Eq. �18�.

We emphasize that this is all within the assumption that,
to good approximation, the parent modes span the space of
the exact modes of interest. We can confirm that this is in-
deed reasonable for our sample structures by examining the
results of such an approximate calculation and comparing
with exact numerical solutions. In Fig. 4�a� we plot the dis-
persion relations of the two bound modes of the overall
structure of Fig. 1�c�; one mode is symmetric and one anti-
symmetric in x about the middle of the central three rows of
rods in Fig. 1�c�. The squares indicate the dispersion

relations obtained by diagonalizing Eq. �28�, and the solid
line the exact dispersion relations of the structure obtained
numerically using a freely available software package �17�.
At a given frequency it is often the coupling length between
the symmetric and antisymmetric modes that is of physical
interest; it is given by 	 / ��k�, where �k is the difference in
wave numbers of the two modes. This is plotted in Fig. 4�b�,
again with the squares indicating the results from Eq. �28�,
and the solid line that from the exact numerical solution. In
Fig. 5 we plot the dispersion relations of the two bound
modes of the overall structure of Fig. 3�c�, for a gap of
�=200 nm. Again there is a symmetric and an antisymmetric
mode, the squares are the results of diagonalizing Eq. �28�,
and the solid lines the result of an exact numerical solution.
In the second two rows of Table I we compare the coupling
length at =1.54 �m obtained from the restricted basis so-
lution �28� and the exact numerical solutions for different
gap sizes.

Naturally there is more relative error in the coupling
length than in the dispersion relations of the individual
modes, since the former involves the subtraction of two ap-
proximate quantities that are close in magnitude. Nonethe-
less, these results indicate that for our two sample structures,
as indeed for many structures of interest, the use of the

FIG. 4. �Color online� �a� Dispersion relation for �a /2	c
� �0.30,0.40� for the structure depicted in Fig. 1�c�. Squares indi-
cate the dispersion relation obtained by diagonalizing Eq. �28� and
solid line indicates the dispersion relation obtained by a freely
available software package �Ref. �17��. �b� Coupling length vs nor-
malized frequency for light propagating in the structure depicted in
Fig. 1�c�. Coupling lengths calculated using Eq. �28� are indicated
by squares; coupling lengths calculated numerically are indicated
by the solid line.

FIG. 5. �Color online� Dispersion relation for �d /2	c
� �0.08,0.16� for the structure depicted in Fig. 3�c�. In this specific
example, we have d=200 nm and �=200 nm. Squares indicate the
dispersion relation obtained by diagonalizing Eq. �28� and solid line
indicates the dispersion relation obtained by a freely available soft-
ware package.

TABLE I. Comparison of the exact coupling length, for the
structure in Fig. 3�c�, with that predicted by two approximate
schemes discussed in this paper. The exact result is calculated using
a freely available numerical package �Ref. �17��. The gap size � is
defined as the distance between the edge of one waveguide to the
edge of the other.

gap size 100 nm 150 nm 200 nm 250 nm

Exact 1.88 �m 2.98 �m 4.71 �m 7.43 �m

Restricted basis 1.81 �m 2.93 �m 4.67 �m 7.41 �m

CMT 1.84 �m 2.97 �m 4.71 �m 7.44 �m
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restricted basis of parent modes is a good one for the deter-
mination of the exact modes. Henceforth we refer to the
modes of overall structures identified by Eq. �30�, found by
solving the eigenvalue equation �28�, as the “nominal
modes,” and treat them as the exact modes. The fields Dmk�r�
associated with the Bmk�r� follow from the condition �13�;
using the corresponding relations �20� that the parent modes
satisfy, we can write

Dmk�r� = �
j

�m
�j��k�Dk

�j��r� , �33�

where

�m
�j��k� =

�k
�j�

�mk
�m

�j��k� . �34�

IV. DRESSED MODES

For the derivation of our coupled mode equations we will
require neither the nominal modes Bmk�r� �30�, nor the par-
ent modes Bk

�i��r� �19�, but rather a set of “dressed modes”
that are superpositions of the modes Bmk�r� resembling the
parent modes. We define dressed mode operators according
to

bnk = �
m

�m
�n��k�amk. �35�

From this it follows that dressed mode operators satisfy the
canonical commutation relation

�bnk,bn�k�
† � = �nn���k − k�� ,

�bnk,bn�k�� = 0, �36�

where we have used the orthonormality relations �32� and the
fact that the amk and am�k�

† satisfy the canonical commutation
relations �17�. The inverse relation of Eq. �35� is easily found
to be

amk = �
n

��m
�n��k��*bnk, �37�

and using it we can write the Hamiltonian �18� as

H = ��
n,n�


 dk�nn��k�bnk
† bn�k, �38�

with

�nn��k� = �
m

�mk�m
�n��k���m

�n���k��*. �39�

Using relation �37� for the nominal mode amplitudes in
terms of the dressed mode amplitudes, and Eq. �30� relating
the Bmk�r� to the parent modes, we write our field as

B�r,t� = �
m

 dk���mk

2
amkBmk�r� + c.c.

= �
n

 dk���k

ref

2
bnkB̄nk�r� + c.c., �40�

where we have introduced a reference frequency �k
ref, which

may be chosen to depend on k; we will turn to its choice in
the section below. The dressed mode Bnk�r� is then identified
as

B̄nk�r� = �
j

�̄n
�j��k�Bk

�j��r� , �41�

where

�̄n
�j��k� = �

l,m
�S−1/2�k�� jl��mk

�k
ref �m

�l��k���m
�n��k��*. �42�

Similarly, we have

D�r,t� = �
m

 dk���mk

2
amkDmk�r� + c.c.

= �
n

 dk���k

ref

2
bnkD̄nk�r� + c.c., �43�

where

D̄nk�r� = �
j

�̄n
�j��k�Dk

�j��r� , �44�

with

�̄n
�j��k� = �

l,m
�S−1/2�k�� jl �k

�j�

��mk�k
ref

�m
�l��k���m

�n��k��*. �45�

While the raising and lowering operators bnk
† and bnk as-

sociated with the dressed states clearly satisfy the canonical

commutation relations �36�, the mode functions B̄nk�r� and

D̄nk�r� do not satisfy any of the orthonormalization condi-
tions �15�. In Figs. 6 and 7 the two dressed states at a given
frequency for the structures depicted in Figs. 1�c� and 3�c�
are shown; in each case it is evident that the first dressed
state has its energy localized in the first waveguide, and the

FIG. 6. �Color online� Real part of the x component of the
magnetic field �color online� of the two dressed modes for the
structure in Fig. 1�c�.
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second dressed state has its energy localized in the second.
Thus they resemble the parent modes. In fact, the dressed

modes B̄nk�r� differ from the parent modes Bk
�n��r� only be-

cause of two effects: �a� the overlap matrix S�k� is not diag-
onal and �b� the mode frequencies �mk differ from the parent
mode frequencies �k

�i�. Indeed, if we set Sij�k�=�ij and put all
the �mk equal in Eq. �42�, we see using the orthogonality

relations �32� that Eq. �41� reduces to B̄nk�r�=Bk
�n��r�.

The first of these two effects is familiar from problems in
quantum chemistry, where often uses a basis of nonorthogo-
nal orbitals and similar overlap matrix element effects arise.
However, the appearance of the term involving ��mk in Eq.
�42� is particular to problems in quantum optics; its appear-
ance can be traced back to the presence of frequency depen-
dent factors appearing in the expressions for the fundamental
fields �11� in terms of canonical raising and lowering opera-
tors, which arise because of the inherently relativistic nature
of the photon.

As alluded to in the Introduction, these frequency factors
make our problem more complicated than the simpler situa-
tion that arises in quantum chemistry. We can now illustrate
that explicitly. In quantum chemistry one typically starts with
a Hamiltonian of the form

H = Hs + He-e, �46�

where He−e describes the electron-electron interaction, which
is the analog of nonlinearity in the optical case, and Hs de-
scribes the single particle Hamiltonian, which is the analog
of the linear Hamiltonian �8� in the optical problem; here

Hs =
 �†�r�H�r,r����r��drdr�, �47�

where


 H�r,r����r��dr� = −
�2

2m
�2��r� + V�r���r� , �48�

with V�r� characterizing the single particle potential to which
the electrons are subject. In the electron problem the field
operators ��r� satisfy anticommutation relations

��r��†�r�� + �†�r����r� = ��r − r�� , �49�

rather that the commutation relations that are important for
bosons, but that difference is not relevant to the issue at
hand. The point is that we can begin with any set of “parent
orbitals” ���r�, whether or not they are orthogonal, and
introducing an overlap matrix with elements

S�� =
 ����r��*���r�dr , �50�

we can immediately construct dressed orbitals according to

�̄��r� = �
�

�S−1/2������r� . �51�

By construction these dressed orbitals satisfy


 �̄�
*�r��̄��r�dr = ���, �52�

and since they are orthonormal we can use as an expansion
basis for our field operators

��r� = �
�

a��̄��r� , �53�

where a� is a destruction operator associated with the orbital
�̄��r�,

a�a�
† + a�

†a� = ���. �54�

Then the single-particle part �47� of the Hamiltonian can be
written

Hs = �
�,�

�
 �̄�
*�r�H�r,r���̄��r��drdr�	a�

†a�, �55�

similar to Eq. �38�. Note that this can be done without solv-
ing for the exact eigenstates of H�r ,r�� because any ortho-
normal basis �52� can be used to expand the field operator
��r� in the form �53�, where a� satisfies the canonical anti-
commutation relations �54�. In the optics problem, on the
other hand, the expansion �11� cannot be written down for
any normalized Bmk�r� and any �mk if the amk are to satisfy
the canonical commutation relations; those modes must be
the true modes and the frequencies the true frequencies. Thus
here the dressed modes can be constructed only after the true
modes are identified.

V. SIMPLIFYING THE DRESSED MODE HAMILTONIAN

A Hamiltonian of the form �38� is simpler than the most
general Hamiltonian bilinear in the raising and lowering op-
erators because it contains no “counter-rotating” terms in-
volving the product of two raising or two lowering operators;
while no approximations have been made, beyond taking the
nominal modes to be exact, the Hamiltonian is of a “rotating-
wave” form. Hence it is easier to diagonalize, for example,
than the most general bilinear Hamiltonian. Associated with
this, we will see below, is the ability to construct coupled
mode equations in an easy way. But since the nominal modes

FIG. 7. �Color online� Real part of the x component of the
magnetic field �color online� of the two dressed modes for the
structure in Fig. 3�c�.
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themselves must be found before the dressed modes can be
constructed and Eq. �38� identified, a skeptic might still
question the benefit of identifying these dressed modes and
working in terms of them rather than simply working with
the nominal modes. It turns out, however, that to good ap-
proximation the dressed mode Hamiltonian �38� can essen-
tially be written down immediately once the parent modes
are given. Thus in practice it is not necessary to find the
nominal eigenmodes and eigenfrequencies to identify the
dressed modes and their coupling constants �nn��k�.

This is possible because, in a typical mode coupling prob-
lem at optical frequencies, the true eigenmode frequencies
�mk of interest lie much closer to each other than does any of
them to zero frequency. That is, we can choose a reference
frequency �k

ref such that it is reasonable to assume that

�mk �
�mk − �k

ref

�k
ref �56�

has a norm much less than unity for all the true eigenmodes
m of interest. Let us suppose such a choice has been made; in
our structures of Figs. 1�c� and 3�c� the obvious choice of
�k

ref is the frequency of the parent modes at the specified k.
We can then write our expression �39� for �nn��k� in terms of
the �mk and the �m

�n��k�,

�nn��k� = �k
ref��nn� + �1

nn��k�� , �57�

where we have used the first term of Eq. �32� and defined the
components of matrices �p�k� according to

�p
nn��k� � �

m

��mk�p�m
�n��k���m

�n���k��*. �58�

To come up with an approximation for �1�k� and thus

�nn��k�, we rewrite Eq. �29� in an exactly equivalent form

�
j

Ñij�k��m
�j��k� = ��mk +

1

2
�mk

2 	�m
�i��k� , �59�

where we have defined the components of a matrix Ñ�k�
according to

Ñij�k� �
c2

2��k
ref�2�M̃ij�k� − ��k

ref

c
	2

�ij . �60�

Multiplying the eigenvalue equation �59� by ��m
�l��k��* and

summing over m we find

Ñil�k� = �1
il�k� +

1

2
�2

il�k� , �61�

where we have used the first of Eq. �32� and the definition
�58� of the �p�k�. Since �p�k� involves ��mk�p, and
��mk��1, it is clear that to lowest order we can here neglect
�2�k� compared to �1�k� and write

�1
il�k� = Ñil�k� + ¯ . �62�

In fact, we show in the Appendix that formal series expan-

sions �A10�–�A12� for the �p�k� in terms of powers of Ñ�k�

can be constructed to find the better approximations that we
employ below.

To then identify an appropriate expansion for �nn��k�, we
write

S�k� = U + s�k� , �63�

and

N�k� �
c2

2��k
ref�2�M�k� − ��k

ref

c
	2

S�k� , �64�

so Ñ�k�=S−1/2�k� ·N�k� ·S−1/2�k�. Note that N�k� and S�k�
are matrices with small components that can be constructed
immediately, without any diagonalization, once M�k� and the
overlap matrix S�k� are calculated. From Eqs. �57� and
�A10� we then find the expansion

�nn��k�
�k

ref = �nn� + Y�1
nn��k� + Y�2

nn��k� + Y�3
nn��k� + ¯ , �65�

where

Y�1 = N ,

Y�2 = −
1

2
N2 −

1

2
�Ns + sN� ,

Y�3 =
1

2
N3 +

1

4
�sN2 + N2s� +

1

2
NsN +

3

8
�Ns2 + s2N�

+
1

4
sNs .

Here we have used the expansions �A10�–�A12� �p�k� in

terms of powers Ñ�k�, and expanding Ñ�k� in terms of
powers of N�k� and s�k�.

We can also use this approach to find approximate expres-

sions for B̄nk�r� and D̄nk�r� without having to solve the
eigenvalue equation for �mk. Returning to Eqs. �42� and �45�
and writing

��mk

�k
ref	±1/2

= �1 + �mk�±1/2, �66�

from Eq. �56�, we can use the expansion of these terms
in powers of �mk to generate approximate expressions for
�̄n

�j��k� and �̄n
�j��k� in terms of the �p�k� and S�k�. Then again

using the expansions �A10�–�A12� of �p�k� in terms of pow-

ers Ñ�k�, and expanding Ñ�k� in terms of powers of N�k� and
S�k�, we find

�̄n
�j��k� = � jn + Y�1

nn��k� + Y�2
nn��k� + Y�3

nn��k� + ¯ , �67�

where

Y�1 =
1

2
N −

1

2
s ,

Y�2 = −
3

8
N2 −

1

4
Ns −

1

2
sN +

3

8
s2,
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Y�3 =
7

16
N3 +

3

16
N2s +

3

8
NsN +

3

8
sN2 +

3

16
Ns2 +

1

4
sNs

+
1

2
s2N −

5

16
s3

and

�k
ref

�k
�j� �̄n

�j��k� = � jn + Y�1
nn��k� + Y�2

nn��k� + Y�3
nn��k� + ¯ ,

�68�

where

Y�1 = −
1

2
N −

1

2
s ,

Y�2 =
5

8
N2 +

1

4
Ns +

1

2
sN +

3

8
s2,

Y�3 = −
15

16
N3 −

5

16
N2s −

5

8
NsN −

5

8
sN2 −

3

16
Ns2 −

1

4
sNs

−
1

2
s2N −

5

16
s3.

To investigate the accuracy of this approach we introduce
quantities

�nn��k� �
�nn��k�

�k
ref − �nn�, �69�

�̃n
�j��k� � �̄n

�j��k� − � jn,

�̃n
�j��k� �

�k
ref

�k
�j� �̄n

�j��k� − � jn.

In Table II we consider the structure of Fig. 1�c� and evaluate

these quantities at a k that, for the parent modes, corresponds
to a vacuum wavelength of =1.54 �m. We do this both by
using the exact expressions �39�, �42�, and �45�, and by using
the corresponding approximate expressions �65�, �67�, and
�68� to different orders, where by an mth order calculation

we mean including the Yis
nn��k� up to s=m, for i=�, �, and �.

In Table III we present the corresponding data for the struc-
ture of Fig. 3�c� at =1.54 �m. We see that doing even a
low order calculation of the quantities �nn��k�, �̃n

�j��k�, and
�̃n

�j��k� yields a good approximation to the exact values.

VI. EFFECTIVE FIELDS AND THE COUPLED MODE
EQUATIONS

The dressed mode Hamiltonian �38� is precisely of the
form required for a straightforward derivation of coupled
mode equations to describe the propagation of light. We be-
gin by writing that Hamiltonian in a form that explicitly
separates out the small terms involving the coupling between
the parent modes

H =
 dk��self�k��
n

bnk
† bnk +
 dk��cross�k��

n,n�

�bnk
† bn�k,

�70�

where the prime on the second sum indicates that the terms
with n�=n are to be excluded; we have also specialized to
our particular sample structures and put

��self�k� � �11�k� = �22�k� ,

��cross�k� � �12�k� = �21�k� .

For pulses centered about a frequency � equal to �
k̄

ref
, for

some k̄, we follow earlier work �11� and introduce effective
fields according to

TABLE II. Comparison of quantities �nn�, �̃n
�j�, and �̃n

�j� associated with the structure depicted in Fig. 1�c� using exact and approximate
expressions.

�11=�22 �12=�21 �̃1
1= �̃2

2 �̃1
2= �̃2

1 �̃1
1= �̃2

2 �̃1
2= �̃2

1

1st order 3.9775�10−4 1.2698�10−4 1.9887�10−4 −7.6527�10−3 −1.9887�10−4 −1.1335�10−2

2nd order 3.2098�10−4 1.2667�10−3 2.7649�10−4 −7.6594�10−3 −2.6780�10−6 −1.1327�10−2

3rd order 3.2119�10−4 1.2672�10−3 2.7669�10−4 −7.6601�10−3 −2.9145�10−6 −1.1331�10−2

exact 3.2115�10−4 1.2672�10−3 2.7668�10−4 −7.6601�10−3 −2.8346�10−6 −1.1331�10−2

TABLE III. Comparison of quantities �nn�, �̃n
�j�, and �̃n

�j� associated with the structure depicted in Fig. 3�c� using exact and approximate
expressions.

�11=�22 �12=�21 �̃1
1= �̃2

2 �̃1
2= �̃2

1 �̃1
1= �̃2

2 �̃1
2= �̃2

1

1st order −1.8576�10−4 −8.0656�10−4 −9.2878�10−5 −4.7962�10−2 9.2878�10−4 −2.3068�10−2

2nd order 1.2726�10−3 −8.0628�10−4 2.8929�10−3 −4.7956�10−2 1.0461�10−3 −2.3073�10−2

3rd order 1.2721�10−3 −8.0918�10−4 2.8925�10−3 −4.8151�10−2 1.0462�10−3 −2.3121�10−2

exact 1.2778�10−3 −8.0919�10−4 2.9056�10−3 −4.8152�10−2 1.0490�10−3 −2.3121�10−2
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gn�z,t� =
1

�2	



BZ
dkbnke

i�k−k̄�z, �71�

where the integral ranges over the first Brillouin zone.
From the fact that the bnk and bnk

† satisfy the canonical com-
mutation relations follows the commutation relation for the
effective fields,

�gn��z�,t�,gn
†�z,t�� = �n,n��̂�z − z�� , �72�

where �̂�z−z�� represents an effective delta function, in the
sense that

f�z,t� =
 dz�f�z�,t��̂�z� − z� �73�

when the function f�z , t� contains only wave number �Fourier
components� in the first Brillouin zone. The idea is that the
effective fields gn�z , t� are assumed to be slowly varying

functions of position compared with the length scale 2	 / k̄,
and so the expression �71� contains significant contributions

only from k close to k̄. We then expand the �k
ref appearing in

the first term of Eq. �70� about k̄, and write

H � Hcme �
 dk���self�k̄� + �vg�k − k̄���
n

bnk
† bnk

+
 dk�
n,n�

���cross�k̄�bnk
† bn�k �74�

in place of Eq. �70�, where

vg = � ��self�k̄�
�k

�
k=k̄

�75�

is the group velocity associated with the parent modes. In the
second term in Eq. �74� we have evaluated ��cross�k� at k

= k̄; since we assume that �12�k�=�21�k��1 the effect of this
term is small, and we neglect its dispersion. This approach
can be made more rigorous within the context of a formal
multiple scales analysis, which we do not pursue here. Using
�71� in the approximate Hamiltonian �74� we find we can
write Hcme as

Hcme = ��self�k̄��
n

 gn

†�z�gn�z�dz

+
i

2
�vg�

n

 � �gn

†�z,t�
�z

gn�z,t� − gn
†�z,t�

�gn�z,t�
�z

	dz

+ ��cross�k̄��
n,n�

�
 gn
†�z�gn��z�dz .

Applying this Hamiltonian to our examples, from the
dynamical equations for the effective fields

�

�t
gn�z,t� = −

i

�
�gn�z,t�,Hcme� , �76�

for n=1,2 labeling the dressed modes of our examples �see
Figs. 6 and 7�, we find

�g1,2

�t
+ vg

�g1,2

�z
= − i�self�k̄�g1,2�z,t� − i�cross�k̄�g2,1�z,t� .

�77�

Equations �77� are the �linear� coupled mode equations for
the examples we consider here. We identify the coupling
length they predict in the usual way �18� by looking for a
stationary solution

g1,2�z,t� = g̃1,2�z�exp�− i�self�k̄�t� , �78�

and finding that for g̃2�0�=0 we have

�g̃1�z��2 = �g̃1�0��2 cos2 �z ,

�g̃2�z��2 = �g̃1�0��2 sin2 �z ,

where

� � �cross�k̄�/vg, �79�

and so we find the coupling length predicted to be

�z =
	

2���
=

	vg

2��cross�k̄��
. �80�

For the second of our sample structures �see Fig. 3�c��, we
give in the third row of Table I the predicted value �z of the
coupling length that follows from this formula for different
gap sizes. The small differences from the “restricted basis”
results are due solely to the approximations made in moving
from the Hamiltonian �70� to the Hamiltonian �74�, since the
dressed mode Hamiltonian �38� is equivalent to the exact
Hamiltonian �18� within the approximation that the nominal
modes found within the restricted basis are equal to the exact
modes. Less drastic approximations in moving from Eq.
�70�–�74�, such as keeping higher terms in the expansion of
�self�k� and keeping the lowest order dispersion in �cross�k�,
can easily be constructed. They would lead to more compli-
cated coupled mode equations, but a more accurate descrip-
tion of the coupling within the restricted basis assumption.
However, since at least for the structures considered here the
error in the coupling length associated with the approxima-
tions in this section is comparable to the error associated
with using the restricted basis, such an extension does not
seem justified.

VII. DISCUSSION

We have presented a Hamiltonian formulation of linear
coupled mode theory applicable to photonic crystal struc-
tures, and other waveguiding structures. The modes are as-
sociated with parent structures that are related in a natural
way to the actual structure of interest, as the parent structures
of Figs. 1�a� and 1�b� are related to the actual structure of
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Fig. 1�c�, and the parent structures of Figs. 3�a� and 3�b� are
related to the actual structure of Fig. 3�c�. Yet the “coupled
modes” in the theory are not modes of the parent structures,
but rather dressed modes that resemble them. Even within
the approximation that a restricted set of modes of the parent
structures form a basis for expanding the exact modes of the
actual structure, these exact modes must, strictly speaking,
be found before the dressed modes can be constructed. How-
ever, if as usual the frequency shifts due to the coupling of
the dressed modes are small, in practice the dressed modes
can be found immediately as series expansions involving
modes of the parent structures. While the use of such an
expansion is arguably not needed for the simple structures
we considered as our examples in this paper, it will present a
real advantage when many coupled modes are involved, such
as in a SCISSOR structure where modes associated with a
number of resonators are coupled with travelling modes in
nearby waveguide channels �7�. We plan to turn to this in a
future communication.

The resulting linear dressed mode Hamiltonian, which is
simply the Hamiltonian of the linear system written in terms
of canonical raising and lowering operators for the dressed
modes, contains no “counter-rotating” terms, and forms
the natural starting point for deriving the coupled mode
equations. Our sample calculations for two typical systems
illustrate the accuracy of the approximations inherent in
this kind of approach. Better approximations to the exact
modes can naturally be achieved by using more parent
modes in the expansion, and the accuracy of the coupled
mode equations can be improved by including terms
involving spatial derivatives higher than the first.

One of the strengths of this approach is its easy generali-
zation to nonlinear quantum optics. A �nonresonant� nonlin-
ear response is typically described by an additional,
nonlinear polarization of the form

PNL
i �r,t� = �0�2

ijk�r�Ej�r,t�Ek�r,t�

+ �0�3
ijkl�r�Ej�r,t�Ek�r,t�El�r,t� + ¯ , �81�

where �2
ijk�r� and �3

ijkl�r� are, respectively, the usual second-
and third-order susceptibility tensors of nonlinear optics,
which we here allow to depend on position. From our point
of view it is more convenient to construct this kind of power
series expansion in terms of our fundamental field D�r , t�,
writing

PNL
i �r,t� = �2

ijk�r�Dj�r,t�Dk�r,t�

+ �3
ijkl�r�Dj�r,t�Dk�r,t�Dl�r,t� + ¯ . �82�

As in our discussion of the linear response in Sec. II, there is
no loss of generality here, because the ��s can easily be
constructed in terms of the ��s using the second of Eq. �3�.
Then the full Hamiltonian is obtained by replacing the H of
Eq. �8� by

HNL = H −
1

3�0

 drDi�r��2

ijk�r�Dj�r�Dk�r�

−
1

4�0

 drDi�r��3

ijkl�r�Dj�r�Dk�r�Dl�r� + ¯ ,

as discussed earlier �11�. The route to nonlinear coupled
mode equations is now straightforward. As in the linear limit
we take H→Hcme �see Eq. �74�� and then in the nonlinear
contributions to HNL above we substitute our expression �43�
for D�r� in terms of the dressed modes. The derivation then
proceeds in precisely the same way as was earlier shown
�11,12� for the kind of single parent type of theory mentioned
in the Introduction; the expression for HNL−H can be writ-
ten, within the usual approximations, in terms of powers of
gn�z , t� and gn

†�z , t�. Hence the inclusion of nonlinear effects
in the canonical description of a multiple parent structure is
now no longer more complicated than it is for single parent
structures. We plan to turn to this in detail, and its applica-
tions to artificially structured materials, in later publications.
Particularly interesting is the extension to describe coupling
between N coupled nonlinear waveguides and the description
of discrete spatial solitons with a ��3� or cascaded ��2� non-
linearity. To date, coupled mode equations governing the
evolution of the electromagnetic field in discrete coupled
systems have been derived phenomenologically, with the
nonlinear coefficients determined by numerical means �e.g.,
by finite difference time domain simulations�. The results
presented here should facilitate the derivation of nonlinear
coefficients in these phenomenological coupled equations for
discrete systems, and in particular aid in understanding the
physics of their size and behavior at different frequencies.
Such an easy generalization to nonlinear structures within a
canonical framework suitable for quantization is not avail-
able for other coupled mode theory presented in the literature
�2�. As well, since the Hamiltonian we use is identified with
the energy of the electromagnetic field, generalizations to
include in the Hamiltonian the interaction of modes with
nearby atoms, molecules, or quantum dots is straightforward
�19–22�.

ACKNOWLEDGMENTS

The authors acknowledge financial support from Photon-
ics Research Ontario �PRO�, the Natural Science and Engi-
neering Research Council of Canada, and the DARPA Slow-
Light program. P.C. acknowledges an Ontario Graduate
Scholarship.

APPENDIX

Here we detail a formal series expansion for the matrix
�1�k� introduced in Sec. V. For simplicity, we keep the k
label on all quantities implicit in this appendix, writing �1 in
place of �1�k�, for example. From Eq. �59� we can, by ap-

plying the matrix Ñ to both sides of the equation p−1 times,
find
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�
j


p
ij�m

�j� = ��m +
1

2
�m

2 	p

�m
�i�, �A1�

where we have defined the matrices


p � Ñp. �A2�

Proceeding as in Sec. V, we multiply both sides of the
equation by ��m

�l��* and sum over m to find


p
il = �

m
��m +

1

2
�m

2 	p

�m
�i���m

�l��*

= �
m

�
q=0

p �p

q
	��m�p−q�1

2
�m

2 	q

�m
�i���m

�l��*

= �
m
���m�p + �

q=1

p �p

q
	�m

p+q

2q �m
�i���m

�l��*,

and so using our definitions �58� of the �p we can write this
as


p = �p − �
s=1

�

cps�s, �A3�

where we have put

cp�p+q� � −
1

2q�p

q
	 if q = 1,2, . . . ,p

� 0 otherwise.

That is cps only exists for s� p, and in particular only for
s= p+1, p+2, . . . ,2p. We can then write Eq. �A3� as

�
s

Kps�s = 
p, �A4�

where we have set

Kps � �ps − cps. �A5�

Then we have

�p = �
s

�K−1�ps
s. �A6�

Requiring

�
s

�K−1�psKsr = �pr �A7�

and using the definition �A5� for Ksr, we find the equation

�K−1�ps = �ps + �
r

�K−1�prcrs. �A8�

Iterating this equation, we find

�K−1�ps = �ps + cps + �
q

cpqcqs + �
q,r

cpqcqrcrs + ¯ .

�A9�

Recalling the range over indices over which the cps are
nonzero, we can easily construct the first few terms of
�K−1�1s:

�K−1�11 = 1,

�K−1�12 = c12 = −
1

2
,

�K−1�13 = c12c23 =
1

2
,

�K−1�14 = c12c24 + c12c23c24 = −
5

8
,

�K−1�15 = c12c23c35 + c12c24c45 + c12c23c34c45 =
7

8
,

and so we have

�1 = Ñ −
1

2
Ñ2 +

1

2
Ñ3 −

5

8
Ñ4 +

7

8
Ñ5 + ¯ , �A10�

where we have used the definition �A2� of the 
p. Similarly
we find

�K−1�22 = 1,

�K−1�23 = c23 = − 1,

�K−1�24 = c24 + c23c34 =
5

4
,

�K−1�25 = c24c45 + c23c35 + c23c34c45 = −
7

4

and

�K−1�33 = 1,

�K−1�34 = c34 = −
3

2
,

�K−1�35 = c35 + c34c45 =
9

4
,

which yields

�2 = Ñ2 − Ñ3 +
5

4
Ñ4 −

7

4
Ñ5 + ¯ , �A11�

�3 = Ñ3 −
3

2
Ñ4 +

9

4
Ñ5 + ¯ . �A12�
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